NEW STANDARD ACADEMY

Date: 02-09-24 CLASS: 11TH NEET Time: 3 HRS

PHYSICS

- 1. In a uniform circular motion, the direction of linear velocity is along the
 - a) Tangent to the curve path
 - b) Radius vector towards the centre
 - c) Perpendicular to the plane of the circular motion
 - d) Radius vector
- 2. For a particle performing UCM, the physical quantities are constant
 - a) Speed and angular velocity
 - b) Kinetic energy and radius vector
 - c) Angular velocity and Kinetic energy
 - d) 'a' and 'c'
- 3. A particle describes a circular path of diameter 20 m every 2s. the average angular speed of the particle during 4s is
 - a) $20 \pi \text{ rad/ s}$
 - b) $10 \pi \text{ rad/s}$
 - c) $5\pi \text{ rad/s}$
 - d) π rad/s
- 4. A particles moves in a circular path of radius 10 cm with a constant speed of 10 cm/s. its acceleration is
 - a) 100cm/s^2
 - b) 10 cm/s^2
 - c) 1 cm/s^2
 - d) Zero
- 5. A sprit level is placed at the edge of a turn table along its radius. The bubble will be
 - a) At the centre of the container
 - b) At the outer edge of the container
 - c) At the inner edge of the container
 - d) Will oscillate about the centre of the container
- 6. A body of mass 0.4 kg is revolved in a horizontal circle of radius 5m. If it performs 120 rev/min, the centripetal force acting on it is.
 - a) $2 \pi^{2} N$
 - b) $4 \pi^2 \text{ N}$
 - c) $16\pi^2$ N

- d) $32\pi^2$ N
- 7. The maximum safe speed of a vehicle on a circular track is 15 km/h. When the track becomes wet, the maximum safe speed is 10 km/h. the ratio of coefficient of friction of dry track to that of the wet track is
 - a) 2:3
- b) 3:2
- c) 9:4
- d) 1:1
- 8. A car takes a circular turn at an optimum speed on a road which is banked at an angle $\theta = \sin^{-1} 0.1$. If the required centripetal force is 400 N, the normal reaction on the car is
 - a) 400 N, vertically upward
 - b) 40N, normal to the road surface
 - c) 4000 N, normal to the road surface
 - d) 4000 N, vertically downward
- 9. A bucket of water, tied to a rope is to be rotated without spilling in a vertical circle of radius 5 m. The minimum speed of the bucket at the highest position should be
 - a) 0.7 m/s
- b) 2 m/s
- c) 4 m/s
- d) 7 m/s
- 10. The angular acceleration of a rotating body which slows down from 500 rpm to rest in 10 seconds is about
 - a) 5 rad/s^2
 - b) -2.5 rad/s^2
 - $c) 5 \text{ rad/s}^2$
 - $d) 10 \text{ rad/s}^2$
- 11. A bob of mass 30 g suspended by a string is able to complete a vertical circular loop at a place where g = 10 m/s². If the maximum change in its PE during the motion is 0.6 J, the radius of the path is
 - a) 10 m
- b) 2m
- c) 1 m
- d) 0.5 m
- 12. Initial angular velocity of a wheel is 2 rad/s. It rotates with a constant angular acceleration of 3.5 rad/s². Its angular displacement in 2 s is

- a) 4 rad
- b) 7 rad
- c) 8 rad
- d) 11 rad
- 13. A bicycle is moving with a constant velocity \vec{v} the graph of angular speed ω , of its wheels against the distance travelled s is
 - a) A hyperbola
 - b) A straight line parallel to the ωaxis
 - c) A straight line parallel to the s axis
 - d) A parabola
- 14. When a body moves with a constant speed along a circle,
 - a) Its linear velocity remains constant
 - b) No force acts on it
 - c) No work is done on it
 - d) No acceleration is produced is in it
- 15. Two particles, whose masses are in the ratio 7:3, go around two concentric tracks whose radii are in the ratio 1:2 If their linear speeds are in the ratio 1:2, their centripetal accelerations are in the ratio
 - a) 7:6
- b) 1:1
- c) 1:2
- d) 1:4

CHEMISTRY

- 1. At constant temperature, the equilibrium constant Kp for the decomposition reaction expressed by $Kp = 4x^2 P/(1 x^2)$ of decomposition. N $_2$ O $_4 \rightleftharpoons 2NO_2$ where P = pressure, x = extent Which one of the following statements is true?
 - (1) K_p increases with increase of P
 - (2) K_P increases with increase of x
 - (3) K_p increases with decrease of x
 - (4) K_p remains constant with change in P and x
 - 2. It is not possible to attain equilibrium in
 - (1) closed system
 - (2) isolated system
 - (3) open system
 - (4) none of these
 - 3. In the lime kiln, the reversible reaction CaCO₃ ⇒ CaO + CO₂ proceeds to completion because of
 - (1) high temperature
 - (2) CO₂ escapes
 - (3) CaO is removed
 - (4) low temperature

4.

Example of homogeneous equilibria is

(1)
$$Ca(OH)_{2(s)} + H_2O_{(aq)} \longrightarrow Ca_{(aq)}^{2+} + 2OH_{(aq)}^{-}$$

(2)
$$Ag_2O_{(s)} + 2HNO_{3(aq)} \Longrightarrow 2AgNO_{3(aq)} + H_2O_{(l)}$$

(3)
$$\operatorname{Fe}_{(aq)}^{3+} + \operatorname{SCN}_{(aq)}^{-} \longrightarrow \operatorname{Fe}(\operatorname{SCN})_{(aq)}^{2+}$$

(4)
$$Ni_{(s)} + 4CO_{(g)} \rightleftharpoons Ni(CO)_{4(g)}$$

- 5. Which of the following is a characteristic of reversible reaction?
 - (1) It never proceeds to completion
 - (2) It can be influenced by a catalyst
 - (3) It proceeds only in the forward direction
 - (4) Number of moles of reactants and products are equal
- 6. 60 g of water gas and 18 g of steam are heated in a closed vessel to a temperature of 450°C so that the equilibrium: $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$ is reached. If K for the CO_2 will be
 - (1) 11 g
 - (2) 22 g
 - (3) 44 g
 - (4) 60 g
- 7. For a reaction, $2\text{NOCl}_{(g)} \rightleftharpoons 2\text{NO}_{(g)} + \text{Cl}_{2(g)}$, K. at 427°C is $3 \times 10^{-6}\text{L}$ mol⁻¹, The value of K is nearly
 - $(1) 7.5 \times 10^{-5}$
 - $(2) 2.5 \times 10^{-5}$
 - $(3) 2.5 \times 10^{-4}$
 - $(4) 1.72 \times 10^{-4}$

8.

The equilibrium constants for the reaction

$$Zn_{(S)} + Cu_{(aq)}^{2+} \rightleftharpoons Zn_{(aq)}^{2+} + Cu_{(S)}$$
 and

$$Cu_{(S)} + 2Ag_{(aq)}^+ \Longrightarrow Cu_{(aq)}^{2+} + 2Ag_{(S)}$$

- are K_1 and K_2 respectively. Then the equilibrium constant for the reaction $Zn_{(S)} + 2Ag_{(aa)}^{\dagger} \rightleftharpoons Zn_{(aa)}^{2+} + 2Ag_{(S)}$ will be
- (1) $K_1 + K_2$
- (2) K, \times K,
- $(3) K_1/K_2$
- (4) K, K,
- 9. If 0.2 moles of $H_{2(g)}$ and 2.0 moles of $S_{(s)}$ are mixed in a 1 dm³ vessel at

90°C, the partial pressure of H₂S formed according to the reaction

 $H_{2(g)} + S_{(s)} \rightleftharpoons H_2S_{(g)} (K = 6.8 \times 10^{-2})$ would be

- (1) 0.19 atrn
- (3) 0.6 atm
- (2) 0.38 atm
- (4) 0.072 atm
- 10. a moles of PCI₅ are heated in a closed container to equilibriate $PCl_5 \rightleftharpoons PCl_{(g)}$ + $Cl_{2(g)}$ at a pressure of P atm. If x moles of PCl₅ dissociate at equilibrium, then

$$(1) \ \frac{x}{a} = \frac{K_p}{K_p + P}$$

(2)
$$\frac{x}{a} = \left(\frac{K_p + P}{K_p}\right)^{1/2}$$

$$(3) \ \frac{x}{a} = \left(\frac{K_p}{P}\right)^{1/2}$$

(3)
$$\frac{x}{a} = \left(\frac{K_p}{P}\right)^{1/2}$$
 (4) $\frac{x}{a} = \left(\frac{K_p}{K_p + P}\right)^{1/2}$

- 11. The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5×10^{-10} respectively. The overall dissociation constant of the acid will be
 - $(1) 0.2 \times 10^5$
 - $(2) 5 \times 10^{-5}$
 - $(3) 5 \times 10^{-15}$
 - $(4) 5 \times 10^{-15}$
- 12. Incorrect relation is
 - (1) $\Delta G = \Delta G^{o} + RT \ln(K)$
 - (2) $\Delta G^{\circ} = -R T I n K$
 - (3) $\Delta G^{\circ} = \Delta G + RT \ln(K)$
 - (4) $K = e^{-G^0/RT}$
- 13. Calculate the degree of dissociation of PCl₅ the density at 230 °C is 70.
 - (1) 97.8%
 - (3) 4.89%
 - (2) 48.9%
 - (4) 24.45%

14.

In which of the following reaction $K_p > K_c$?

(1)
$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

(2)
$$H_{2(g)} + I_{2(g)} \Longrightarrow 2HI_{(g)}$$

(3)
$$PCl_{3(g)} + Cl_{2(g)} \sim PCl_{5(g)}$$

(4)
$$2SO_{3(g)} \Longrightarrow 2SO_{2(g)} + O_{2(g)}$$

15.

For the reaction $2HI \Longrightarrow H_2 + I_2$

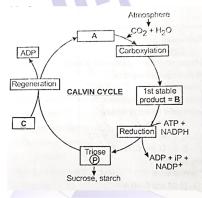
 $(1) K_{p} > K_{c}$

(3) $K_{p} = K_{c}$

(4) None of these

BIOLOGY

- I Initial CO₂ acceptor
 - II. Extent of photorespiration
 - III. Enzyme catalyzing reaction that fixes
 - IV. Presence of Calvin Cycle
 - V. Leaf anatomy


Which one does not differ between a C₃ and a C₄ plant?

- (a) I and V
- (b) IV
- (c) II and III
- (d) II
- PEP carboxylase is -
 - (a) Involved in at least some CO₂ fixation in both C3 and C4 plants.
 - (b) Catalyzes the reaction fixing CO₂ into pyruvic acid in bundle sheath cells
 - (c) Capable of fixing CO₂ more efficiently at lower atmospheric CO₂ concentration than RUBP carboxylase
 - (d) The most abundant enzyme in the world
- 3. When Rubisco acts as an oxygenase -
 - (a) Phsophoglycerate and phosphogiycolate are produced
 - (b) Phosphoenol pyruvate is oxidized
 - (c) Net carbon fixation is enhanced
 - (d) It must mean that the piant is deprived of CO₂
- Calvin Cycle has -4.
 - (a) Carboxylation, Regenration
 - (b) Oxygenation, Regeneration
 - (c) Reduction, Oxygenation
 - (d) Carboxylation, reduction and regeneration
- 5. Which of following ratio is correct for the production of one molecule of glucose through 6 rounds of calvin cyle?

	CO_2	:	ATP	: N	IADPH ₂
(a)	1	:	2	:	2
(b)	6	:	18	:	12
(c)	6	:	12	:	18
(d)	5	:	6	:	9

- 6. C₄ plants are abundant in -
 - (a) Temperate region with more humid conditions
 - (b) Temeprate region with more dry conditions
 - (c) Tropical region with more humid conditions
 - (d) Tropical region with more dry conditions
- 7. The leaves of C₄ plants show-
 - (a) No chioroplasts in cells of bundle sheath
 - (b) No chioroplasts in mesophyll
 - (c) Mononorphic chloroplasts
 - (d) Kranz anatomy
- 8. Under the normal condition which one is the major limiting factor?
 - (a) CO₂ conc.
 - (b) Light
 - (c) Temperature
 - (d) Chl. Conc

9.

			_		
Ida	ntifu	Δ	R	and	
IUC	HUIV	Λ.	U	allu	

	<u>A</u>	<u>B</u>	<u>c</u>
(a)	ATP	3PGA	RuBP
(b)	3PGA	ATP	Sugar
(c)	RuBP	3-PGA	ATP
(d)	Sugar	RuDP	NADPH

- 10. In an experiment, mature leaves on the plant were enclosed for a fixed amount of time in a transparent bag the radioactive CO₂ In which part of the plant will maximum radioactivity be found after some time?
 - (a) Actively growing leaves

- (b) Guard cells of all the leaves.
- (c) In mature leaves.
- (d) Senescing leaves and roots.
- 11. CAM helps the plants in
 - (a) Reproduction
 - (b) Conserving water
 - (c) Secondary growth
 - (d) Disease resistance
- 12. In Kranz anatomy, the bundle sheath cells have
 - (a) thin walls, many intercellular spaces and no chloroplasts
 - (b) thick walls, no intercellular spaces and large number of chloroplasts
 - (c) thin walls, no intercellular spaces and several chloropiasts
 - (d) thick walls, many intercellular spaces and few chloroplasts
- 13. Bundle sheath cells
 - (a) Are rich in RuBisCO
 - (b) Are rich in PEP carboxylase
 - (c) Lack RuBisCO
 - (d) Lack both RuBisCO and PEP carboxylase
- 14. Stomata remain open at night in
 - (a) C₃ plants
 - (b) C₄ piants
 - (c) CAM piants
 - (d) Hydrophytic plants
- 15. The entire reactions of C₄ pathway takes place in
 - (a) Mesophyll and bundle sheath
 - (b) Vascular bundle and palisade tissue
 - (c) Mitochondria and peroxisome
 - (d) Bundle sheath and endoplasmic reticulum